Notes

Studies on Amphiprotic Compounds. ${ }^{1} 4$. Application of the $\alpha_{2}{ }_{2}$ Hydrogen-Bonding Acidity Scale to Complexation between Pyridine \boldsymbol{N}-Oxide and Monomeric Hydrogen-Bond Donors in Cyclohexane

José-Luis M. Abboud, ${ }^{*,}{ }^{\dagger}$ Khadija Sraidi, ${ }^{\ddagger}$
Michael H. Abraham, ${ }^{8}$ and Robert W. Taft ${ }^{\perp}$

Instituto de Quimica Física "Rocasolano", CSIC, c/ Serrano 119, E-28006 Madrid, Spain, Department of Chemistry, University of California, Irvine, California 92717, Départment de Chimie, Faculté des Sciences, Université Cadi Ayyad, Marrakech, Morocco, and Department of
Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom

Received May 4, 1989

Introduction

Equilibrium constants (as $\log K_{\mathrm{c}}$ values) for the 1:1 hydrogen-bond (HB) complexation, eq 1, in tetrachloromethane solvent at $25.0^{\circ} \mathrm{C}$ have been analyzed to yield new scales of solute HB acidity and solute HB basicity. ${ }^{2-5}$

$$
\begin{equation*}
\mathrm{AH}+\mathrm{B} \stackrel{K_{\mathrm{c}}}{\rightleftarrows} \mathrm{AH} \cdots \mathrm{~B} \tag{1}
\end{equation*}
$$

In eq $1, A H$ is the HB donor and B is the HB acceptor, all species being present as the monomeric form in dilute solution. It was established that $\log K_{c}$ values for a series of acids against a given reference base in CCl_{4} could be represented by eq 2 , in which L_{B} and D_{B} characterize the $\log K_{\mathrm{c}}$ (series of acids against reference base B) $=$

$$
\begin{equation*}
L_{\mathrm{B}} \log K_{\mathrm{A}}^{\mathrm{H}}+D_{\mathrm{B}} \tag{2}
\end{equation*}
$$

reference base and $\log K^{\mathrm{H}}$ is a new parameter that characterizes the HB acidity of the series of acids. ${ }^{2,3}$ Forty-five equations of type 2 yielded $\log K^{\mathrm{H}}{ }_{\mathrm{A}}$ values for 186 HB acids. In this analysis, use was made of the observation that all the 45 equations intersected at a point where $\log K^{\mathrm{H}}{ }_{\mathrm{A}}=-1.1$, when equilibrium constants were expressed in $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at 298 K . This observation then enables a HB acidity parameter, $\alpha{ }_{2}$, to be defined with an origin of zero, via eq $3 .^{2,3}$

$$
\begin{equation*}
\alpha^{\mathrm{H}_{2}}=\left(\log K_{\mathrm{c}}+1.1\right) / 4.6363 \tag{3}
\end{equation*}
$$

The scaling factor of 4.6363 serves only to yield a suitable spread of $\alpha^{\mathrm{H}}{ }_{2}$. A set of equations, similar to eq 2 , could be constructed to give a general HB basicity parameter, $\log K^{\mathrm{H}}{ }_{\mathrm{B}}$, which in turn was used to define a HB basicity scale with an origin of zero, through eq 4. ${ }^{4,5}$

$$
\begin{equation*}
\beta_{2}^{\mathrm{H}_{2}}=\left(\log K_{\mathrm{B}}+1.1\right) / 4.6363 \tag{4}
\end{equation*}
$$

Finally, the $\alpha_{2}{ }_{2}$ and β_{2} scales could be combined to give

[^0]a single expression for $\log K_{c}$ values in tetrachloromethane, eq $5 .{ }^{6}$
\[

$$
\begin{equation*}
\log K_{\mathrm{c}}=7.354 \alpha^{\mathrm{H}}{ }_{2} \beta_{2}^{\mathrm{H}}-1.094 \tag{5}
\end{equation*}
$$

\]

Equation 5 has been applied to a data matrix of 1312 experimental $\log K_{c}$ values with a correlation coefficient of 0.9956 and a standard deviation (sd) of $0.093 \log$ units; 89 primary $\alpha^{\mathrm{H}}{ }_{2}$ and 215 primary $\beta_{2}{ }_{2}$ values are presently available.

Although tetrachloromethane is the most commonly used solvent in the measurement of K_{c} values for reaction 1, cyclohexane has also often been used and is probably the second most widely used solvent. It has been shown ${ }^{7}$ that pyridine N-oxide (PyO) is a very convenient base for the determination of K_{c} values for reaction 1 in cyclohexane, particularly in cases where HA is either strongly self-associated or is a weak HB acid.

The present work is intended to link results obtained using PyO in cyclohexane ${ }^{8}$ with the scales of HB acidity, $\alpha^{\mathrm{H}}{ }_{2}$, and $\log K_{\mathrm{A}}{ }_{\mathrm{A}}$, set up with solvent tetrachloromethane. ${ }^{2,3}$

Results and Discussion

Here we report a series of equilibrium constants, K_{PyO} (in $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$) pertaining to equilibrium 6 in highly dilute

$$
\begin{equation*}
\mathrm{AH}+\mathrm{OPy} \rightleftarrows \mathrm{AH} \cdots \mathrm{OPy} \tag{6}
\end{equation*}
$$

solution in cyclohexane at $23.3^{\circ} \mathrm{C}$. The experimental values given in Table I have been determined by UVvisible spectrometry, using a method already described. ${ }^{7}$

Important consequences and features of these results are as follows:
(1) A wide variety of HB acids, including the CH, NH, OH , and SH functionalities have been studied, and the results span a range of over 4 orders of magnitude in $K_{\text {Pyo }}$.
(2) The parameters α^{H} and K_{PyO} are related ${ }^{9}$ through eq 7 :

$$
\begin{array}{r}
\alpha^{\mathrm{H}_{2}}=(0.069 \pm 0.028)+(0.185 \pm 0.010) \log K_{\mathrm{PyO}} \tag{7}\\
n=22, r^{2}=0.986, \text { sd }=0.03 \text { in } \alpha^{\mathrm{H}}{ }_{2} \text { units }
\end{array}
$$

This indicates that the HB acidity ranking found in tetrachloromethane holds also for the system $\mathrm{P}_{\mathrm{y}} \mathrm{O} /$ cyclohexane.

[^1]Table I. Experimental $\boldsymbol{K}_{\mathrm{PyO}}$ and $\boldsymbol{K}_{\mathrm{p}}$ Values for Reactions 1 and 9 and $\alpha^{\mathrm{H}}{ }_{2}$ Acidity Parameters for Selected HB Proton Donors

proton donor	$K_{\mathrm{PyO}}{ }^{\text {a }}$	$K_{\mathrm{p}}{ }^{\text {b }}$	$\alpha^{H}{ }_{2}{ }^{\text {c }}$	$\alpha^{H_{2}{ }^{\text {d }}}$	$\log K^{H}{ }_{\text {a }}{ }^{\text {c }}$
$\mathrm{CH}_{3} \mathrm{OH}^{\text {e }}$	25.3 ± 1.3	2.2×10^{4}	0.37	0.33	0.603
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}^{\text {e }}$	18.9 ± 0.5	4.3×10^{4}	0.33	0.30	0.442
$n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}^{e}$	19.4 ± 0.6	$-$	0.33	0.30	0.363
$i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}^{e}$	18.7 ± 0.5	5.1×10^{4}	0.32	0.30	0.405
$s-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}^{e}$	17.3 ± 0.4	-1×10^{4}	0.32	0.29	-
$t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}^{e}$	18.0 ± 0.5	5.1×10^{4}	0.32	0.30	0.383
$\mathrm{Cl}_{3} \mathrm{CCH}_{2} \mathrm{OH}^{\prime}$	$(3.30 \pm 0.17) \times 10^{2}$	-1×10^{4}	0.50	0.54	1.218
$\mathrm{F}_{3} \mathrm{CCH}_{2} \mathrm{OH}^{e}$	$(7.88 \pm 0.40) \times 10^{2}$	3.2×10^{9}	0.57	0.61	1.530
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH}^{\text {e }}$	$(5.40 \pm 0.27) \times 10^{3}$	2.0×10^{12}	0.77	0.78	2.474
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}^{f}$	$(9.47 \pm 0.01) \times 10^{2}$	2.0×10^{8}	0.60	0.63	1.665
4-5C6 $\mathrm{H}_{4} \mathrm{OH}^{f}$	$(1.87 \pm 0.03) \times 10^{3}$	6.3×10^{9}	0.63	0.69	1.818
$4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{OH}^{\prime}$	$(2.23 \pm 0.01) \times 10^{3}$	4.0×10^{10}	0.67	0.70	2.007
$3-\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}^{f}$	$(2.25 \pm 0.04) \times 10^{3}$	$-$	-	0.69	-
$\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}^{\prime}$	$(4.85 \pm 0.02) \times 10^{3}$	-	0.76	0.76	2.441
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH}^{f}$	0.584 ± 0.023	-	0.00	0.01	-1.182
$n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}^{f}$	0.667 ± 0.010	-	0.00	0.02	-1.182
$i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}^{\prime}$	0.652 ± 0.057	-	0.00	0.02	-1.182
$t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SH}^{\prime}$	0.735 ± 0.035	-	0.00	0.03	-1.182
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CCH}^{f}$	1.23 ± 0.03	-	0.12	0.07	-0.56
$\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\prime}$	2.41 ± 0.03	-	0.13	0.13	-0.50
$\mathrm{Cl}_{3} \mathrm{CH}$	4.73 ± 0.16	-	0.20	0.18	-0.185
$\mathrm{HCON}(\mathrm{H}) \mathrm{CH}_{3}{ }^{\prime}$	50.5 ± 2.5	-	$0.38{ }^{\text {h }}$	0.38	0.676^{h}
$\mathrm{CF}_{3} \mathrm{CON}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{5}{ }^{f}$	$(8.78 \pm 0.44) \times 10^{2}$	-	-	0.62	-
pyrazole ${ }^{8}$	$(4.05 \pm 0.16) \times 10^{2}$	-	-	0.55	-
3(5)-methylpyrazole ${ }^{6}$	$(3.51 \pm 0.54) \times 10^{2}$	-	-	0.54	-
4-methylpyrazole ${ }^{\text {g }}$	$(3.29 \pm 0.16) \times 10^{2}$	-	-	0.53	-
3,5-dimethylpyrazole ${ }^{\text {B }}$	$(2.32 \pm 0.16) \times 10^{2}$	-	-	0.54	-
3,4,5-trimethylpyrazole ${ }^{\text {g }}$	$(2.00 \pm 0.16) \times 10^{2}$	-	-	0.49	-
4-bromopyrazole ${ }^{\text {g }}$	$(1.05 \pm 0.06) \times 10^{2}$	-	-	0.63	-
3,5-methyl-4-bromopyrazole ${ }^{\text {b }}$	$(1.03 \pm 0.10) \times 10^{2}$	-	0.41	0.63	- 0.7934
pyrrole ${ }^{f}$	40.3 ± 1.4	-	0.41	0.36	0.7934

${ }^{a} \mathrm{In} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ in $c-\mathrm{C}_{6} \mathrm{H}_{12}$ at $23.3^{\circ} \mathrm{C}$. ${ }^{b} \mathrm{In} \mathrm{atm}^{-1}$ at 300 K . ${ }^{\text {c }}$ See refs 2 and $3 .{ }^{d}$ Calculated through eq 7. ${ }^{e}$ Values taken from ref 1 . ${ }^{f}$ This work and ref $8 .{ }^{g}$ Values from ref $12 .{ }^{h}$ Value for N-methylacetamide. ${ }^{i}$ Estimated value.
(3) A direct comparison between $\log K_{\mathrm{PyO}}$ and $\log K_{\mathrm{A}}{ }_{\mathrm{A}}$ yields eq 8 :

$$
\begin{equation*}
\log K_{\mathrm{A}}^{\mathrm{H}}=(-0.85 \pm 0.11)+(0.885 \pm 0.053) \log K_{\mathrm{PyO}} \tag{8}
\end{equation*}
$$

$$
n=21, r^{2}=0.986, \mathrm{sd}=0.15 \log \text { units }
$$

The slope of this linear relationship (0.89) is a direct measure of the relative sensitivity of two model processes. The $P_{y} \mathrm{O} / c-\mathrm{C}_{6} \mathrm{H}_{12}$ system is seen to be more sensitive than the general acid $/ \mathrm{CCl}_{4}$ system by a factor of $1.00: 0.89$.
(4) Caldwell and Kebarle ${ }^{10}$ have determined the equilibrium constants K_{P} for the formation of the 1:1 HB complex between iodide ion and several HB acids in the gas phase (reaction 9):

$$
\begin{equation*}
\mathrm{AH}+\mathrm{I}^{-} \rightleftarrows \mathrm{AH} \cdots \mathrm{I}^{-} \tag{9}
\end{equation*}
$$

Values of K_{P} (in atm ${ }^{-1}$) at 300 K are given in Table I. We find that $\alpha^{\mathrm{H}}{ }_{2}, K_{\text {PyO }}$, and K_{p} are related through eqs 10 and 11:

$$
\begin{gather*}
\alpha_{2}{ }_{2}(0.08 \pm 0.07)+(0.0564 \pm 0.0092) \log K_{\mathrm{P}} \tag{10}\\
n=9, r^{2}=0.965, \text { sd }=0.04 \alpha_{2}^{\mathrm{H}} \text { units } \\
\log K_{\mathrm{PyO}}=(-0.230 \pm 0.040)+(0.339 \pm 0.048) \log K_{\mathrm{P}} \tag{11}
\end{gather*}
$$

$$
n=9, r^{2}=0.968, \mathrm{sd}=0.19 \log \text { units }
$$

Although the quality of these correlations is somewhat lower than that of eqs 7 and 8 , it is clear that the solution

[^2]$H B$ acidity ranking defined by $\alpha_{2}{ }_{2}$ or $\log K_{\mathrm{PyO}}$ also holds in the gas phase for the compounds listed in Table $I,{ }^{11}$ at least in the case of the associations with large anions, for differential polarizability contributions from the hydro-gen-bonding acids are then likely to be small. ${ }^{10}$
(5) Equation 4 provides a means of determining $\alpha^{\mathrm{H}_{2}}$ values from $K_{\text {Pyo }}$. This method has been applied to several NH acids for which little or no information was so far available (see Table I). A comparison of the HB acidities of some NH and OH proton donors reveals that the HB acidities of pyrrole and N-methylformamide are comparable to, but larger than, that of methanol. Pyrazole is as acidic as 1,1,1-trifluoroethanol; 4-bromopyrazole and 1,1,1-trifluoroacetanilide are as strong as phenol. These comparisons highlight the appreciable $H B$ acidity of these NH acids as well as their large sensitivity to structural and substituent effects. ${ }^{12}$ Work is now under way to further extend the data base of $K_{\text {PyO }}$ values for these families of compounds.

Experimental Section

The equilibrium constants have been determined by the same technique and with the same instruments used in previous studies. ${ }^{7}$
(11) (a) A more extensive correlation, involving $\mathrm{H}_{2} \mathrm{O},{ }^{10 \mathrm{a}}$ several carboxylic acids, ${ }^{10 \mathrm{a}}$ and phenols ${ }^{10 \mathrm{~b}}$ leads to eq 12 :

$$
\begin{gather*}
\alpha_{2} \mathrm{H}_{2}(0.111 \pm 0.046)+(0.0534 \pm 0.053) \log K_{\mathrm{P}} \tag{12}\\
n=18, r^{2}=0.961, \mathrm{sd}=0.032 \alpha_{2}{ }_{2} \text { units }
\end{gather*}
$$

The agreement between eqs 10 and 12 is, therefore, quite good. (b) At this point however, the existence of family-dependent relationships involving HB acids with other functionalities cannot be ruled out. An extension of the K_{P} data base should be carried out to ascertain this matter.

All the compounds were commercial, of the highest purity available, dried, and further purified by standard methods. Structures were confirmed by their IR and NMR spectra. Purities were checked by GLC and or TLC. The origin and treatment of $c-\mathrm{C}_{6} \mathrm{H}_{12}$ and PyO have also been described. ${ }^{7}$

Acknowledgment. We are grateful to Prof. P. Kebarle (University of Alberta, Edmonton, Canada) for providing a number of unpublished results. Work by J.-L.M.A. was supported by Grant PB87-0357 from CICYT. This work is dedicated in memoriam to Dr. Mortimer J. Kamlet.

Registry No. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}, 108$-95-2; 4- $\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{OH}, 371-41-5$; 4$\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{OH}, 106-48-9 ; 3-\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}, 19438-10-9 ; \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}$, $771-61-9 ; \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH}, 75-08-1 ; n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}, 107-03-9 ; i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}, 75-$ $33-2 ; t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{SH}, 75-66-1 ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CCH}, 536-74-3 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}, 75-09-2$; $\mathrm{Cl}_{3} \mathrm{CH}, 67-66-3 ; \mathrm{HCONHCH}_{3}, 123-39-7 ; \mathrm{CF}_{3} \mathrm{CONHC}_{6} \mathrm{H}_{5}, 404-24-0$; $\mathrm{Cl}_{3} \mathrm{CCH}_{2} \mathrm{OH}, 115-20-8$; PyO, 694-59-7; pyrrole, 109-97-7; pyrazole, 288-13-1; 3-methylpyrazole, 1453-58-3; 4-methylpyrazole, 7554-65-6; 3,5-dimethylpyrazole, 67-51-6; 3,4,5-trimethylpyrazole, 5519-42-6; 4-bromopyrazole, 2075-45-8; 3-methyl-4-bromopyrazole, 13808-64-5.
(12) This is in line with recent reports on the acidity and basicity of azoles, both in the gas phase and in solution (see, e.g.: Catalán, J.; Abboud, J.-L. M.; Elguero, J. In Advances in Hetereocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New York, 1987; Vol. 41, pp 187-274).

An Improved One-Pot Method for the Stereoselective Synthesis of the ($2 S, 3 R$)-3-Amino-2-hydroxy Acids: Key Intermediates for Bestatin and Amastatin

Rosario Herranz,* Julia Castro-Pichel, Soledad Vinuesa, and M. Teresa Garcia-López

Instituto de Quimica Médica (CSIC), Juan de la Cierva, 3, 28006-Madrid, Spain
Received June 23, 1989
Bestatin (1), an aminopeptidase B and leucine-aminopeptidase inhibitor, ${ }^{1}$ and amastatin (2), an aminopeptidase A inhibitor, ${ }^{2}$ are two low molecular weight peptidic immunomodifiers, ${ }^{3-6}$ with antitumor and antimicrobial activities. ${ }^{7}$ The presence and absolute configurations of the ($2 S, 3 R$)-3-amino-2-hydroxy-4-phenylbutanoic acid [(2S,3R)-AHPBA] and ($2 S, 3 R$)-3-amino-2-hydroxy-5methylhexanoic acid [$2 S, 3 R$)-AHMHA] residues in 1 and 2, respectively, are crucial for their bioactivities. Among the several methods reported for the preparation of AHPBA and AHMHA, key intermediates for the preparation of 1 and 2 , that involving aqueous hydrolysis of the cyanohydrin, obtained from the corresponding N-protected α-amino aldehyde, has been the most extensively used. ${ }^{8,9}$

[^3]

However, this method is not stereoselective, and, as deprotection occurs during hydrolysis, a protection step is required to separate the resulting diastereomers, and to form the peptidic bond. Therefore, the overall yield of N-protected AHPBA or AHMHA is low ($<30 \%$). Other methods give either ($2 S, 3 R$)- N-Z-AHPBA ($\mathrm{Z}=$ benzyloxycarbonyl) stereoselectively, but in low overall yield $(14 \%),{ }^{10}$ or as a racemic mixture of the threo ${ }^{11,12}$ isomers of AHPBA in less than 30%.

[^4]
[^0]: ${ }^{\dagger}$ Instituto de Química Física "Rocasolano".
 \ddagger Université Cadi Ayyad.
 § University College.
 \perp University of California, Irvine.

[^1]: (1) Part 3 in this series: Abboud, J.-L. M.; Roussel, C.; Gentric, E.; Sraidi, K.; Lauransan, J.; Guihēneuf, G.; Kamlet, M. J.; Taft, R. W. J. Org. Chem. 1988, 53, 1545.
 (2) Abraham, M. H.; Duce, P. P.; Grellier, P. L.; Prior, D. V.; Morris, J. J., Taylor, P. J. Tetrahedron Lett. 1988, 29, 1578.
 (3) Abraham, M. H.; Grellier, P. L.; Prior, D. V.; Duce, P. P.; Morris, J. J.; Taylor, P. J. J. Chem. Soc., Perkin Trans. 2, in press.
 (4) Abraham, M. H.; Grellier, P. L.; Prior, D. V.; Duce, P. P.; Morris, J. J.; Taylor, P. J.; Laurence, C.; Berthelot, M. Tetrahedron Lett., in press.
 (5) Abraham, M. H.; Grellier, P. L.; Prior, D. V.; Morris, J. J.; Taylor, P. J. J. Chem. Soc., Perkin Trans. 2, submitted.
 (6) Abraham, M. H.; Grellier, P. L.; Prior, D. V.; Taft, R. W.; Morris, J. J.; Taylor, P. J.; Laurence, C.; Berthelot, M.; Doherty, R. M.; Kamlet, M. J.; Abboud, J.-L. M.; Sraidi, K.; Guihēneuf, F. J. Am. Chem. Soc. 1988, 110, 8534.
 (7) Frange, B.; Abboud, J.-L. M.; Benamou, C.; Bellon, L. J. Org. Chem. 1982, 47, 4553 and references therein.
 (8) Sraidi, K. M.Sc. Thesis, University of Marrakech, 1987.
 (9) Error limits for these correlations are two standard deviations,

[^2]: (10) (a) Caldwell, G.; Kebarle, P. J. Am. Chem. Soc. 1984, 106, 967. (b) Private communication from Prof. P. Kebarle.

[^3]: (1) Umezawa, H.; Aoyagi, T.; Suda, H.; Hamada, M.; Takeuchi, T. J. Antibiot. 1976, 29, 97.
 (2) Aoyagi, T.; Tobe, H.; Kojima, F.; Hamada, M.; Takeuchi, T.; Umezawa, H. J. Antibiot. 1978, 31, 636.
 (3) Fukasawa, T.; Takeuchi, T.; Aoyagi, T.; Umezawa, H. J. Antibiot. 1980, 33, 642.
 (4) Umezawa, H., Ed. Small Molecular Immunomodifiers of Microbial Origin. Fundamental and Clinical Studies of Bestatin; Pergamon Press: Oxford, 1981.
 (5) Miura, K.; Sawa, T.; Takeuchi, T.; Umezawa, H. J. Antibiot. 1986, 34, 734 .
 (6) Okura, A.; Ishizuka, M.; Takeuchi, T. J. Antibiot. 1988, 41, 261.
 (7) Blomgren, H.; Wasserman, J. Cancer Lett. 1981, 11, 303.
 (8) Nishizawa, R.; Saino, T.; Takita, T.; Suda, H.; Aoyagi, T.; Umezawa, H. J. Med. Chem. 1977,'20, 510 .
 (9) Rich, D. H.; Jo Moon, B.; Boparai, A. S. J. Org. Chem. 1980, 45, 2288.

[^4]: (10) Kobayashi, S.; Isobe, T.; Ohno, M. Tetrahedron Lett. 1984, 25, 5079.
 (11) Kato, K.; Saino, T.; Nishizawa, R.; Takita, F.; Umezawa, H. J. Chem. Soc., Perkin Trans. 1 1980, 1618.
 (12) Nishizawa, R.: Saino, T.; Suzuki, M.; Fujii, T.; Shirai, T.; Aoyagi, T.; Umezawa, H. J. Antibiot. 1983, 36, 695.

